Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Heliyon ; 9(3): e13766, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36851970

RESUMO

Background: The bidirectional brain-machine interfaces algorithms are machines that decode neural response in order to control the external device and encode position of artificial limb to proper electrical stimulation, so that the interface between brain and machine closes. Most BMI researchers typically consider four basic elements: recording technology to extract brain activity, decoding algorithm to translate brain activity to the predicted movement of the external device, external device (prosthetic limb such as a robotic arm), and encoding interface to convert the motion of the external machine to set of the electrical stimulation of the brain. New method: In this paper, we develop a novel approach for bidirectional brain-machine interface (BMI). First, we propose a neural network model for sensory cortex (S1) connected to the neural network model of motor cortex (M1) considering the topographic mapping between S1 and M1. We use 4-box model in S1 and 4-box in M1 so that each box contains 500 neurons. Individual boxes include inhibitory and excitatory neurons and synapses. Next, we develop a new BMI algorithm based on neural activity. The main concept of this BMI algorithm is to close the loop between brain and mechaical external device. Results: The sensory interface as encoding algorithm convert the location of the external device (artificial limb) into the electrical stimulation which excite the S1 model. The motor interface as decoding algorithm convert neural recordings from the M1 model into a force which causes the movement of the external device. We present the simulation results for the on line BMI which means that there is a real time information exchange between 9 boxes and 4 boxes of S1-M1 network model and the external device. Also, off line information exchange between brain of five anesthetized rats and externnal device was performed. The proposed BMI algorithm has succeeded in controlling the movement of the mechanical arm towards the target area on simulation and experimental data, so that the BMI algorithm shows acceptable WTPE and the average number of iterations of the algorithm in reaching artificial limb to the target region.Comparison with existing methods and Conclusions: In order to confirm the simulation results the 9-box model of S1-M1 network was developed and the valid "spike train" algorithm, which has good results on real data, is used to compare the performance accuracy of the proposed BMI algorithm versus "spike train" algorithm on simulation and off line experimental data of anesthetized rats. Quantitative and qualitative results confirm the proper performance of the proposed algorithm compared to algorithm "spike train" on simulations and experimental data.

2.
Sci Rep ; 12(1): 19436, 2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-36376426

RESUMO

Artificial intelligence computing adapted from biology is a suitable platform for the development of intelligent machines by imitating the functional mechanisms of the nervous system in creating high-level activities such as learning, decision making and cognition in today's systems. Here, the concentration is on improvement the cognitive potential of artificial intelligence network with a bio-inspired structure. In this regard, four spiking pattern recognition platforms for recognizing digits and letters of EMNIST, patterns of YALE, and ORL datasets are proposed. All networks are developed based on a similar structure in the input image coding, model of neurons (pyramidal neurons and interneurons) and synapses (excitatory AMPA and inhibitory GABA currents), and learning procedure. Networks 1-4 are trained on Digits, Letters, faces of YALE and ORL, respectively, with the proposed un-supervised, spatial-temporal, and sparse spike-based learning mechanism based on the biological observation of the brain learning. When the networks have reached the highest recognition accuracy in the relevant patterns, the main goal of the article, which is to achieve high-performance pattern recognition system with higher cognitive ability, is followed. The pattern recognition network that is able to detect the combination of multiple patterns which called intertwined patterns has not been discussed yet. Therefore, by integrating four trained spiking pattern recognition platforms in one system configuration, we are able to recognize intertwined patterns. These results are presented for the first time and could be the pioneer of a new generation of pattern recognition networks with a significant ability in smart machines.


Assuntos
Inteligência Artificial , Redes Neurais de Computação , Potenciais de Ação/fisiologia , Algoritmos , Reconhecimento Automatizado de Padrão/métodos
3.
Front Hum Neurosci ; 16: 811550, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35677206

RESUMO

The use of transcranial Electrical Stimulation (tES) in the modulation of cognitive brain functions to improve neuropsychiatric conditions has extensively increased over the decades. tES techniques have also raised new challenges associated with study design, stimulation protocol, functional specificity, and dose-response relationship. In this paper, we addressed challenges through the emerging methodology to investigate the dose-response relationship of High Definition-transcranial Direct Current Stimulation (HD tDCS), identifying the role of negative valence in tinnitus perception. In light of the neurofunctional testable framework and tES application, hypotheses were formulated to measure clinical and surrogate endpoints. We posited that conscious pairing adequately pleasant stimuli with tinnitus perception results in correction of the loudness misperception and would be reinforced by concurrent active HD-tDCS on the left Dorsolateral Prefrontal Cortex (dlPFC). The dose-response relationship between HD-tDCS specificity and the loudness perception is also modeled. We conducted a double-blind, randomized crossover pilot study with six recruited tinnitus patients. Accrued data was utilized to design a well-controlled adaptive seamless Bayesian dose-response study. The sample size (n = 47, for 90% power and 95% confidence) and optimum interims were anticipated for adaptive decision-making about efficacy, safety, and single session dose parameters. Furthermore, preliminary pilot study results were sufficient to show a significant difference (90% power, 99% confidence) within the longitudinally detected self-report tinnitus loudness between before and under positive emotion induction. This study demonstrated a research methodology used to improve emotion regulation in tinnitus patients. In the projected method, positive emotion induction is essential for promoting functional targeting under HD-tDCS anatomical specificity to indicate the efficacy and facilitate the dose-finding process. The continuous updating of prior knowledge about efficacy and dose during the exploratory stage adapts the anticipated dose-response model. Consequently, the effective dose range to make superiority neuromodulation in correcting loudness misperception of tinnitus will be redefined. Highly effective dose adapts the study to a standard randomized trial and transforms it into the confirmatory stage in which active HD-tDCS protocol is compared with a sham trial (placebo-like). Establishing the HD-tDCS intervention protocols relying on this novel method provides reliable evidence for regulatory agencies to approve or reject the efficacy and safety. Furthermore, this paper supports a technical report for designing multimodality data-driven complementary investigations in emotion regulation, including EEG-driven neuro markers, Stroop-driven attention biases, and neuroimaging-driven brain network dynamics.

4.
Work ; 72(2): 687-696, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35527605

RESUMO

BACKGROUND: Due to the rapid growth of metropolises and the insufficiency of public transportation, nowadays, many people travel on these vehicles in a standing position. This position leads to discomfort and the risk of falling or non-collision incidents for the passengers. OBJECTIVE: The present study was conducted to analyze an innovative sit-standing seat to prevent falls and non-collision injuries in standing passengers. METHODS: A total of sixteen participated in this study. EMG signal and Borg scale were used to assess muscle activity and discomfort, respectively. RESULTS: The mean Borg scale score for perceived discomfort was lower in the sit-standing position than the standing position in all body organs, except for the hips. Also, in the sit-standing position compared to the standing position, the muscle activity of the soleus and medial gastrocnemius muscles was significantly lower in the constant velocity and entire phases in both legs, lower in the right leg in the acceleration phase and lower in the left leg in the deceleration phase. CONCLUSIONS: So, this seat can be used as an innovative idea to improve the ergonomic condition of standing passengers to prevent falls and non-collision injuries on transit buses.


Assuntos
Veículos Automotores , Posição Ortostática , Ergonomia , Humanos , Perna (Membro)/fisiologia , Músculo Esquelético/fisiologia
5.
Iran J Allergy Asthma Immunol ; 21(2): 151-166, 2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35490269

RESUMO

This study is designed to present an agent-based model (ABM) to simulate the interactions between tumor cells and the immune system in the melanoma model. The Myeloid-derived Suppressor Cells (MDSCs) and dendritic cells (DCs) are considered in this model as immunosuppressive and antigen-presenting agents respectively. The animal experiment was performed on 68 B16F10 melanoma tumor-bearing C57BL/6 female mice to collect dynamic data for ABM implementation and validation. Animals were divided into 4 groups; group 1 was control (no treatment) while groups 2 and 3 were treated with DC vaccine and low-dose 5- fluorouracil (5-FU) respectively and group 4 was treated with both DC Vaccine and low-dose of 5-FU. The tumor growth rate, number of MDSC, and presence of CD8+/CD107a+ T cells in the tumor microenvironment were evaluated in each group. Firstly, the tumor cells, the effector immune cells, DCs, and the MDSCs have been considered as the agents of the ABM model and their interaction methods have been extracted from the literature and implemented in the model. Then, the model parameters were estimated by the dynamic data collected from animal experiments.  To validate the ABM model, the simulation results were compared with the real data. The results show that the dynamics of the model agents can mimic the relations among considered immune system components to an emergent outcome compatible with real data. The simplicity of the proposed model can help to understand the results of the combinational therapy and make this model a useful tool for studying different scenarios and assessing the combinational results. Determining the role of each component helps to find critical times during tumor progression and change the tumor and immune system balance in favor of the immune system.


Assuntos
Melanoma , Animais , Linfócitos T CD8-Positivos , Células Dendríticas , Feminino , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Análise de Sistemas , Microambiente Tumoral
6.
Int J Neuropsychopharmacol ; 25(8): 631-644, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35380672

RESUMO

BACKGROUND: Although transcranial direct current stimulation (tDCS) has shown to potentially mitigate drug craving and attentional bias to drug-related stimuli, individual differences in such modulatory effects of tDCS are less understood. In this study, we aimed to investigate a source of the inter-subject variability in the tDCS effects that can be useful for tDCS-based treatments of individuals with methamphetamine (MA) use disorder (IMUD). METHODS: Forty-two IMUD (all male) were randomly assigned to receive a single-session of either sham or real bilateral tDCS (anodal right/cathodal left) over the dorsolateral prefrontal cortex. The tDCS effect on MA craving and biased attention to drug stimuli were investigated by quantifying EEG-derived P3 (a measure of initial attentional bias) and late positive potential (LPP; a measure of sustained motivated attention) elicited by these stimuli. To assess the association of changes in P3 and LPP with brain connectivity network (BCN) topology, the correlation between topology metrics, specifically those related to the efficiency of information processing, and the tDCS effect was investigated. RESULTS: The P3 amplitude significantly decreased following the tDCS session, whereas the amplitudes increased in the sham group. The changes in P3 amplitudes were significantly correlated with communication efficiency measured by BCN topology metrics (r = -0.47, P = .03; r = -0.49, P = .02). There was no significant change in LPP amplitude due to the tDCS application. CONCLUSIONS: These findings validate that tDCS mitigates initial attentional bias, but not the sustained motivated attention, to MA stimuli. Importantly, however, results also show that the individual differences in the effects of tDCS may be underpinned by communication efficiency of the BCN topology, and therefore, these BCN topology metrics may have the potential to robustly predict the effectiveness of tDCS-based interventions on MA craving and attentional bias to MA stimuli among IMUD.


Assuntos
Viés de Atenção , Metanfetamina , Estimulação Transcraniana por Corrente Contínua , Encéfalo , Sinais (Psicologia) , Eletroencefalografia , Humanos , Masculino , Metanfetamina/efeitos adversos , Córtex Pré-Frontal , Estimulação Transcraniana por Corrente Contínua/métodos
7.
Sensors (Basel) ; 22(6)2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35336570

RESUMO

Brain shift is an important obstacle to the application of image guidance during neurosurgical interventions. There has been a growing interest in intra-operative imaging to update the image-guided surgery systems. However, due to the innate limitations of the current imaging modalities, accurate brain shift compensation continues to be a challenging task. In this study, the application of intra-operative photoacoustic imaging and registration of the intra-operative photoacoustic with pre-operative MR images are proposed to compensate for brain deformation. Finding a satisfactory registration method is challenging due to the unpredictable nature of brain deformation. In this study, the co-sparse analysis model is proposed for photoacoustic-MR image registration, which can capture the interdependency of the two modalities. The proposed algorithm works based on the minimization of mapping transform via a pair of analysis operators that are learned by the alternating direction method of multipliers. The method was evaluated using an experimental phantom and ex vivo data obtained from a mouse brain. The results of the phantom data show about 63% improvement in target registration error in comparison with the commonly used normalized mutual information method. The results proved that intra-operative photoacoustic images could become a promising tool when the brain shift invalidates pre-operative MRI.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Algoritmos , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/cirurgia , Imageamento por Ressonância Magnética/métodos , Camundongos , Procedimentos Neurocirúrgicos/métodos , Imagens de Fantasmas
8.
Int J Neural Syst ; 32(2): 2250004, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34967704

RESUMO

Many studies in the field of sleep have focused on connectivity and coherence. Still, the nonstationary nature of electroencephalography (EEG) makes many of the previous methods unsuitable for automatic sleep detection. Time-frequency representations and high-order spectra are applied to nonstationary signal analysis and nonlinearity investigation, respectively. Therefore, combining wavelet and bispectrum, wavelet-based bi-phase (Wbiph) was proposed and used as a novel feature for sleep-wake classification. The results of the statistical analysis with emphasis on the importance of the gamma rhythm in sleep detection show that the Wbiph is more potent than coherence in the wake-sleep classification. The Wbiph has not been used in sleep studies before. However, the results and inherent advantages, such as the use of wavelet and bispectrum in its definition, suggest it as an excellent alternative to coherence. In the next part of this paper, a convolutional neural network (CNN) classifier was applied for the sleep-wake classification by Wbiph. The classification accuracy was 97.17% in nonLOSO and 95.48% in LOSO cross-validation, which is the best among previous studies on sleep-wake classification.


Assuntos
Sono , Análise de Ondaletas , Encéfalo , Eletroencefalografia , Polissonografia
9.
J Biomed Phys Eng ; 11(2): 205-214, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33937127

RESUMO

BACKGROUND: Brain source imaging based on electroencephalogram (EEG) data aims to recover the neuron populations' activity producing the scalp potentials. This procedure is known as the EEG inverse problem. Recently, beamformers have gained a lot of consideration in the EEG inverse problem. OBJECTIVE: Beamformers lack acceptable performance in the case of correlated brain sources. These sources happen when some regions of the brain have simultaneous or correlated activities such as auditory stimulation or moving left and right extremities of the body at the same time. In this paper, we have developed a multichannel beamformer robust to correlated sources. MATERIAL AND METHODS: In this simulation study, we have looked at the problem of brain source imaging and beamforming from a blind source separation point of view. We focused on the spatially constraint independent component analysis (scICA) algorithm, which generally benefits from the pre-known partial information of mixing matrix, and modified the steps of the algorithm in a way that makes it more robust to correlated sources. We called the modified scICA algorithm Multichannel ICA based EEG Beamformer (MIEB). RESULTS: We evaluated the proposed algorithm on simulated EEG data and compared its performance quantitatively with three algorithms scICA, linearly-constrained minimum-variance (LCMV) and Dual-Core beamformers; it is considered that the latter is specially designed to reconstruct correlated sources. CONCLUSION: The MIEB algorithm has much better performance in terms of normalized mean squared error in recovering the correlated/uncorrelated sources both in noise free and noisy synthetic EEG signals. Therefore, it could be used as a robust beamformer in recovering correlated brain sources.

10.
J Med Signals Sens ; 10(3): 208-216, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33062613

RESUMO

This article summarizes the first and second Iranian brain-computer interface competitions held in 2017 and 2018 by the National Brain Mapping Lab. Two 64-channel electroencephalography (EEG) datasets were contributed, including motor imagery as well as motor execution by three limbs. The competitors were asked to classify the type of motor imagination or execution based on EEG signals in the first competition and the type of executed motion as well as the movement onset in the second competition. Here, we provide an overview of the datasets, the tasks, the evaluation criteria, and the methods proposed by the top-ranked teams. We also report the results achieved with the submitted algorithms and discuss the organizational strategies for future campaigns.

11.
Comput Biol Med ; 127: 104078, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33126121

RESUMO

To develop elastography imaging technologies and implement image reconstruction algorithms, testing is done with phantoms. Although the validation step is usually taken using real data and physical phantoms, their geometry as well as composition, biomechanical parameters, and details of applying stress cannot be modified readily. Such considerations have gained increasing importance with the growth of elastography techniques as one of the non-invasive medical imaging modalities, which can map the elastic properties and stiffness of soft tissues. In this article, we develop a digital viscoelastic phantom using computed tomography (CT) imaging data and several application software tools based on illustrations of normal liver anatomy so as to investigate the biomechanics of elastography via finite element modeling (FEM). Here we discuss how to create this phantom step by step, demonstrate typical shear wave elastography (SWE) experiments of applying transient stress to the liver model, and calculate quantitative measurements. In particular, shear wave velocities are investigated through a parametric study designed based on tissue stiffness and distance from the applied stress. According to the results of FEM analysis, low errors were obtained for shear wave velocity estimation for both mechanical stress (~2-5%) and acoustic radiation force (~3-7%). Results show that our model is a powerful framework and benchmark for simulating and implementing different algorithms in shear wave elastography, which can serve as a guide for upcoming researches and assist scientists to optimize their subsequent experiments in terms of design.


Assuntos
Técnicas de Imagem por Elasticidade , Análise de Elementos Finitos , Fígado/diagnóstico por imagem , Imagens de Fantasmas , Software
12.
Biomed Opt Express ; 11(5): 2533-2547, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32499941

RESUMO

There has been growing interest in low-cost light sources such as light-emitting diodes (LEDs) as an excitation source in photoacoustic imaging. However, LED-based photoacoustic imaging is limited by low signal due to low energy per pulse-the signal is easily buried in noise leading to low quality images. Here, we describe a signal de-noising approach for LED-based photoacoustic signals based on dictionary learning with an alternating direction method of multipliers. This signal enhancement method is then followed by a simple reconstruction approach delay and sum. This approach leads to sparse representation of the main components of the signal. The main improvements of this approach are a 38% higher contrast ratio and a 43% higher axial resolution versus the averaging method but with only 4% of the frames and consequently 49.5% less computational time. This makes it an appropriate option for real-time LED-based photoacoustic imaging.

13.
Traffic Inj Prev ; 21(2): 151-155, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32119568

RESUMO

Objective: Due to the reduced physical ability of elderly, the occurrence of non-collision incidents is higher for these passengers in standing position. Therefore, the purpose of the present study is to determine the critical time points of non-collision incidents using the level of leg muscle activity in elderly standing passengers on urban bus.Methods: To determine the critical time points in the occurrence of non-collision incidents, the level of muscular activity of the standing passengers was analyzed using a surface electromyography (surface EMG) device during the movement scenario of the bus. The results of assessing the leg muscle activity was analyzed in SPSS software.Results: The contraction pattern of the leg muscles in standing passengers was consistent with Newton's First Law. The results showed that the level of muscular activity decreased in the right leg muscles when changing the phase of bus motion from acceleration to constant velocity. This level of muscular activity in the left leg muscles increased when constant velocity changed to deceleration. These changes were quite significant in the medial gastrocnemius and soleus muscles (P < 0.05).Conclusions: According to these findings, it was found that the acceleration and deceleration phases, especially the starting and changing phases of bus motion, are the most critical time points in the occurrence of non-collision incidents in elderly standing passengers on urban bus.


Assuntos
Perna (Membro)/fisiologia , Veículos Automotores , Músculo Esquelético/fisiologia , Posição Ortostática , Ferimentos e Lesões/epidemiologia , Aceleração/efeitos adversos , Acidentes de Trânsito/estatística & dados numéricos , Idoso , Desaceleração/efeitos adversos , Eletromiografia , Humanos , Irã (Geográfico)/epidemiologia , Masculino , Fatores de Tempo , População Urbana/estatística & dados numéricos
14.
Biomed Phys Eng Express ; 6(4): 045019, 2020 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-33444279

RESUMO

The use of intra-operative imaging system as an intervention solution to provide more accurate localization of complicated structures has become a necessity during the neurosurgery. However, due to the limitations of conventional imaging systems, high-quality real-time intra-operative imaging remains as a challenging problem. Meanwhile, photoacoustic imaging has appeared so promising to provide images of crucial structures such as blood vessels and microvasculature of tumors. To achieve high-quality photoacoustic images of vessels regarding the artifacts caused by the incomplete data, we proposed an approach based on the combination of time-reversal (TR) and deep learning methods. The proposed method applies a TR method in the first layer of the network which is followed by the convolutional neural network with weights adjusted to a set of simulated training data for the other layers to estimate artifact-free photoacoustic images. It was evaluated using a generated synthetic database of vessels. The mean of signal to noise ratio (SNR), peak SNR, structural similarity index, and edge preservation index for the test data were reached 14.6 dB, 35.3 dB, 0.97 and 0.90, respectively. As our results proved, by using the lower number of detectors and consequently the lower data acquisition time, our approach outperforms the TR algorithm in all criteria in a computational time compatible with clinical use.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Redes Neurais de Computação , Técnicas Fotoacústicas/métodos , Algoritmos , Animais , Artefatos , Encéfalo/diagnóstico por imagem , Aprendizado Profundo , Diagnóstico por Imagem , Humanos , Camundongos , Imagens de Fantasmas , Razão Sinal-Ruído , Fatores de Tempo
15.
PLoS One ; 14(12): e0226249, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31825996

RESUMO

This study aimed to examine the effects of chronic methamphetamine use on the topological organization of whole-brain functional connectivity network (FCN) by reconstruction of neural-activity time series at resting-state. The EEG of 36 individuals with methamphetamine use disorder (IWMUD) and 24 normal controls (NCs) were recorded, pre-processed and source-reconstructed using standardized low-resolution tomography (sLORETA). The brain FCNs of participants were constructed and between-group differences in network topological properties were investigated using graph theoretical analysis. IWMUD showed decreased characteristic path length, increased clustering coefficient and small-world index at delta and gamma frequency bands compared to NCs. Moreover, abnormal changes in inter-regional connectivity and network hubs were observed in all the frequency bands. The results suggest that the IWMUD and NCs have distinct FCNs at all the frequency bands, particularly at the delta and gamma bands, in which deviated small-world brain topology was found in IWMUD.


Assuntos
Transtornos Relacionados ao Uso de Anfetaminas/patologia , Encéfalo/fisiopatologia , Eletroencefalografia , Descanso/fisiologia , Adulto , Transtornos Relacionados ao Uso de Anfetaminas/metabolismo , Ansiedade/complicações , Ansiedade/patologia , Mapeamento Encefálico , Ondas Encefálicas , Depressão/complicações , Depressão/patologia , Feminino , Humanos , Masculino , Processamento de Sinais Assistido por Computador , Estatísticas não Paramétricas , Estresse Psicológico , Adulto Jovem
16.
Cogn Neurodyn ; 13(6): 519-530, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31741689

RESUMO

Methamphetamine (meth) is potently addictive and is closely linked to high crime rates in the world. Since meth withdrawal is very painful and difficult, most abusers relapse to abuse in traditional treatments. Therefore, developing accurate data-driven methods based on brain functional connectivity could be helpful in classifying and characterizing the neural features of meth dependence to optimize the treatments. Accordingly, in this study, computation of functional connectivity using resting-state EEG was used to classify meth dependence. Firstly, brain functional connectivity networks (FCNs) of 36 meth dependent individuals and 24 normal controls were constructed by weighted phase lag index, in six frequency bands: delta (1-4 Hz), theta (4-8 Hz), alpha (8-15 Hz), beta (15-30 Hz), gamma (30-45 Hz) and wideband (1-45 Hz).Then, significant differences in graph metrics and connectivity values of the FCNs were used to distinguish the two groups. Support vector machine classifier had the best performance with 93% accuracy, 100% sensitivity, 83% specificity and 0.94 F-score for differentiating between MDIs and NCs. The best performance yielded when selected features were the combination of connectivity values and graph metrics in the beta frequency band.

17.
BMC Biomed Eng ; 1: 10, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32903375

RESUMO

BACKGROUND: In Photoacoustic imaging (PAI), the most prevalent beamforming algorithm is delay-and-sum (DAS) due to its simple implementation. However, it results in a low quality image affected by the high level of sidelobes. Coherence factor (CF) can be used to address the sidelobes in the reconstructed images by DAS, but the resolution improvement is not good enough, compared to the high resolution beamformers such as minimum variance (MV). In this paper, it is proposed to use high-resolution-CF (HRCF) weighting technique in which MV is used instead of the existing DAS in the formula of the conventional CF. RESULTS: The higher performance of HRCF is proved numerically and experimentally. The quantitative results obtained with the simulations show that at the depth of 40 mm, in comparison with DAS+CF and MV+CF, HRCF improves the full-width-half-maximum of about 91% and 15% and the signal-to-noise ratio about 40% and 14%, respectively. CONCLUSION: Proposed method provides a high resolution along with a low level of sidelobes for PAI.

18.
Front Neurol ; 9: 825, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30459697

RESUMO

Background: Using conventional tDCS over the temporo-parietal junction (TPJ) we previously reported that it is possible to manipulate subjective visual vertical (SVV) and postural control. We also demonstrated that high-definition tDCS (HD-tDCS) can achieve substantially greater cortical stimulation focality than conventional tDCS. However, it is critical to establish dose-response effects using well-defined protocols with relevance to clinically meaningful applications. Objective: To conduct three pilot studies investigating polarity and intensity-dependent effects of HD-tDCS over the right TPJ on behavioral and physiological outcome measures in healthy subjects. We additionally aimed to establish the feasibility, safety, and tolerability of this stimulation protocol. Methods: We designed three separate randomized, double-blind, crossover phase I clinical trials in different cohorts of healthy adults using the same stimulation protocol. The primary outcome measure for trial 1 was SVV; trial 2, weight-bearing asymmetry (WBA); and trial 3, electroencephalography power spectral density (EEG-PSD). The HD-tDCS montage comprised a single central, and 3 surround electrodes (HD-tDCS3x1) over the right TPJ. For each study, we tested 3x2 min HD-tDCS3x1 at 1, 2 and 3 mA; with anode center, cathode center, or sham stimulation, in random order across days. Results: We found significant SVV deviation relative to baseline, specific to the cathode center condition, with consistent direction and increasing with stimulation intensity. We further showed significant WBA with direction governed by stimulation polarity (cathode center, left asymmetry; anode center, right asymmetry). EEG-PSD in the gamma band was significantly increased at 3 mA under the cathode. Conclusions: The present series of studies provide converging evidence for focal neuromodulation that can modify physiology and have behavioral consequences with clinical potential.

19.
J Biomed Opt ; 23(12): 1-12, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30054995

RESUMO

In linear-array transducer-based photoacoustic (PA) imaging, B-scan PA images are formed using the raw channel PA signals. Delay-and-sum (DAS) is the most prevalent algorithm due to its simple implementation, but it leads to low-quality images. Delay-multiply-and-sum (DMAS) provides a higher image quality in comparison with DAS while it imposes a computational burden of O ( M2 ) . We introduce a nonlinear (NL) beamformer for linear-array PA imaging, which uses the p'th root of the detected signals and imposes the complexity of DAS [O ( M ) ]. The proposed algorithm is evaluated numerically and experimentally [wire-target and in-vivo sentinel lymph node (SLN) imaging], and the effects of the parameter p are investigated. The results show that the NL algorithm, using a root of p (NL_p), leads to lower sidelobes and higher signal-to-noise ratio compared with DAS and DMAS, for (p > 2). The sidelobes level (for the wire-target phantom), at the depth of 11.4 mm, are about -31, -52, -52, -67, -88, and -109 dB, for DAS, DMAS, NL_2, NL_3, NL_4, and NL_5, respectively, indicating the superiority of the NL_p algorithm. In addition, the best value of p for SLN imaging is reported to be 12.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Técnicas Fotoacústicas , Linfonodo Sentinela/diagnóstico por imagem , Ultrassonografia , Algoritmos , Animais , Modelos Teóricos , Imagens de Fantasmas , Ratos , Razão Sinal-Ruído , Transdutores
20.
Front Hum Neurosci ; 12: 201, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29892219

RESUMO

Background: Recent EEG-SSVEP signal based BCI studies have used high frequency square pulse visual stimuli to reduce subjective fatigue. However, the effect of total harmonic distortion (THD) has not been considered. Compared to CRT and LCD monitors, LED screen displays high-frequency wave with better refresh rate. In this study, we present high frequency sine wave simple and rhythmic patterns with low THD rate by LED to analyze SSVEP responses and evaluate subjective fatigue in normal subjects. Materials and Methods: We used patterns of 3-sequence high-frequency sine waves (25, 30, and 35 Hz) to design our visual stimuli. Nine stimuli patterns, 3 simple (repetition of each of above 3 frequencies e.g., P25-25-25) and 6 rhythmic (all of the frequencies in 6 different sequences e.g., P25-30-35) were chosen. A hardware setup with low THD rate (<0.1%) was designed to present these patterns on LED. Twenty two normal subjects (aged 23-30 (25 ± 2.1) yrs) were enrolled. Visual analog scale (VAS) was used for subjective fatigue evaluation after presentation of each stimulus pattern. PSD, CCA, and LASSO methods were employed to analyze SSVEP responses. The data including SSVEP features and fatigue rate for different visual stimuli patterns were statistically evaluated. Results: All 9 visual stimuli patterns elicited SSVEP responses. Overall, obtained accuracy rates were 88.35% for PSD and > 90% for CCA and LASSO (for TWs > 1 s). High frequency rhythmic patterns group with low THD rate showed higher accuracy rate (99.24%) than simple patterns group (98.48%). Repeated measure ANOVA showed significant difference between rhythmic pattern features (P < 0.0005). Overall, there was no significant difference between the VAS of rhythmic [3.85 ± 2.13] compared to the simple patterns group [3.96 ± 2.21], (P = 0.63). Rhythmic group had lower within group VAS variation (min = P25-30-35 [2.90 ± 2.45], max = P35-25-30 [4.81 ± 2.65]) as well as least individual pattern VAS (P25-30-35). Discussion and Conclusion: Overall, rhythmic and simple pattern groups had higher and similar accuracy rates. Rhythmic stimuli patterns showed insignificantly lower fatigue rate than simple patterns. We conclude that both rhythmic and simple visual high frequency sine wave stimuli require further research for human subject SSVEP-BCI studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...